31 research outputs found

    A novel admission control scheme for network slicing based on squatting and kicking strategies

    Get PDF
    New services and applications impose differentquality of service (QoS) requirements on network slicing. Tomeet differentiated service requirements, current Internet servicemodel has to support emerging real-time applications from 5Gnetworks. The admission control mechanisms are expected tobe one of the key components of the future integrated serviceInternet model, for providing multi-level service guarantees withthe different classes (slices) of services. Therefore, this paperintroduces a new flexible admission control mechanism, basedon squatting and kicking techniques (SKM), which can beemployed under network slicing scenario. From the results, SKMprovides 100% total resource utilization in bandwidth contextand 100% acceptance ratio for highest priority class underdifferent input traffic volumes, which cannot be achieved byother existing schemes such as AllocTC-Sharing model due topriority constraints.Peer ReviewedPostprint (published version

    An energy-efficient distributed dynamic bandwidth allocation algorithm for Passive Optical Access Networks

    Get PDF
    The rapid deployment of passive optical access networks (PONs) increases the global energy consumption of networking infrastructure. This paper focuses on the minimization of energy consumption in Ethernet PONs (EPONs). We present an energy-efficient, distributed dynamic bandwidth allocation (DBA) algorithm able to power off the transmitter and receiver of an optical network unit (ONU) when there is no upstream or downstream traffic. Our main contribution is combining the advantages of a distributed DBA (namely, a smaller packet delay compared to centralized DBAs, due to less time being needed to allocate the transmission slot) with energy saving features (that come at a price of longer delays due to the longer queue waiting times when transmitters are switched off). The proposed algorithm analyzes the queue size of the ONUs in order to switch them to doze/sleep mode when there is no upstream/downstream traffic in the network, respectively. Our results show that we minimized the ONU energy consumption across a wide range of network loads while keeping delay bounded.Postprint (published version

    An Integrated SDN-Based Architecture for Passive Optical Networks

    Get PDF
    Passive optical network (PON) are often managed by non-flexible, proprietary network management systems. Software defined networking (SDN) opens the way for a more efficient operation and management of networks. We describe a new SDN-based architecture for Ethernet passive optical networks (EPON), in which some functions of the optical line terminal (OLT) are virtualized and located in an external controller, while keeping the rest of the passive optical network (PON) functionality around an OpenFlow switch. This opens the way for an improved management of the resource usage, bandwidth allocation, quality-of-service (QoS) monitoring and enforcement, or power consumption management, among other possibilities. In order to maintain the time-sensitive nature of the EPON operations, synchronous ports are added to the switch. OpenFlow messages are extended in order to cope with the PON-related parameters. Results based on simulations demonstrate that our proposal performs similarly or better than legacy architectures, in terms of delay and throughput

    An integrated SDN-based architecture for Passive Optical Networks

    Get PDF
    Passive Optical Network (PON) are often managed by non-flexible, proprietary network management systems. Software Defined Networking (SDN) opens the way for a more efficient operation and management of networks. We describe a new SDN-based architecture for Ethernet Passive Optical Networks (EPON), in which some functions of the Optical Line Terminal (OLT) are virtualized and located in an external controller, while keeping the rest of the PON functionality around an Open Flow switch. This opens the way for an improved management of the resource usage, bandwidth allocation, Quality-of-Service (QoS) monitoring and enforcement, or power consumption management, among other possibilities. In order to maintain the time-sensitive nature of the EPON operations, synchronous ports are added to the switch. OpenFlow messages are extended in order to cope with the PON-related parameters. Results based on simulations demonstrate that our proposal performs similarly or better than legacy architectures, in terms of delay and throughput.Postprint (author's final draft

    A proposal for an SDN-based SIEPON architecture

    Get PDF
    Passive Optical Network (PON) elements such as Optical Line Terminal (OLT) and Optical Network Units (ONUs) are currently managed by inflexible legacy network management systems. Software-Defined Networking (SDN) is a new networking paradigm that improves the operation and management of networks. In this paper, we propose a novel architecture, based on the SDN concept, for Ethernet Passive Optical Networks (EPON) that includes the Service Interoperability standard (SIEPON). In our proposal, the OLT is partially virtualized and some of its functionalities are allocated to the core network management system, while the OLT itself is replaced by an OpenFlow (OF) switch. A new MultiPoint MAC Control (MPMC) sublayer extension based on the OpenFlow protocol is presented. This would allow the SDN controller to manage and enhance the resource utilization, flow monitoring, bandwidth assignment, quality-of-service (QoS) guarantees, and energy management of the optical network access, to name a few possibilities. The OpenFlow switch is extended with synchronous ports to retain the time-critical nature of the EPON network. OpenFlow messages are also extended with new functionalities to implement the concept of EPON Service Paths (ESPs). Our simulation-based results demonstrate the effectiveness of the new architecture, while retaining a similar (or improved) performance in terms of delay and throughput when compared to legacy PONs.Peer ReviewedPostprint (author's final draft

    Squatting and kicking model evaluation for prioritized sliced resource management

    Get PDF
    © Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Effective management and allocation of resources remains a challenging paradigm for future large-scale networks such as 5G, especially under a network slicing scenario where the different services will be characterized by differing Quality of Service (QoS) requirements. This makes the task of guaranteeing the QoS levels and maximizing the resource utilization across such networks a complicated task. Moreover, the existing allocation strategies with link sharing tend to suffer from inefficient network resource usage. Therefore, we focused on prioritized sliced resource management in this work and the contributions of this paper can be summarized as formally defining and evaluating a self-provisioned resource management scheme through a smart Squatting and Kicking model (SKM) for multi-class networks. SKM provides the ability to dynamically allocate network resources such as bandwidth, Label Switched Paths (LSP), fiber, slots among others to different user priority classes. Also, SKM can guarantee the correct level of QoS (especially for the higher priority classes) while optimizing the resource utilization across networks. Moreover, given the network slicing scenarios, the proposed scheme can be employed for admission control. Simulation results show that our model achieves 100% resource utilization in bandwidth-constrained environments while guaranteeing higher admission ratio for higher priority classes. From the results, SKM provided 100% acceptance ratio for highest priority class under different input traffic volumes, which, as we articulate, cannot be sufficiently achieved by other existing schemes such as AllocTC-Sharing model due to priority constraints.Peer ReviewedPostprint (author's final draft

    Evaluating the impact of delay constraints in network services for intelligent network slicing based on SKM model

    Get PDF
    © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Solving the problem of network resource allocation with delay constraint is a significant challenge for realizing future Internet and 5G networks services such as advanced mobile broadband services and Internet of things (IoT), especially under the network slicing scenario. The impact of delay constraints may lead to rejection of demands, resulting in low resource utilization of network resources. This is especially severe when dynamic traffic is considered. Therefore, intelligent resource allocation algorithms are required to use the network resources in delay constrained scenario efficiently. Moreover, these algorithms should guarantee quality of service (QoS) between different priority slices during congestion case. Therefore, in this paper, we analyze the impact of delay constraint on the performance of an online resource allocation algorithm based on an intelligent efficient squatting and kicking model (SKM), proved in other works to be the most effective up to the present time yet. SKM incorporates kicking and squatting of resources as innovative techniques enabling it to achieve 100% resource utilization and acceptance ratio for higher priority slices in scenarios where the other state of art algorithms not able to reach by far in some scenarios. Simulation results showed that incorporating delay constraints has a significant impact on the performance, resulting in up to 10% and 4% reduction in terms of average resource utilization and acceptance ratios respectively.Peer ReviewedPostprint (published version

    A QoS-Aware Dynamic Bandwidth Allocation algorithm for passive optical networks with non-zero laser tuning time

    Get PDF
    The deployment of new 5G services and future demands for 6G make it necessary to increase the performance of access networks. This challenge has prompted the development of new standardization proposals for Passive Optical access Networks (PONs) that offer greater bandwidth, greater reach and a higher rate of aggregation of users per fiber, being Time- and Wavelength-Division Multiplexing (TWDM) a promising technological solution for increasing the capacity by up to 40 Gbps by using several wavelengths. This solution introduces tunable transceivers into the Optical Network Units (ONUs) for switching from one wavelength to the other, thus addressing the ever-increasing bandwidth demands in residential broadband and mobile fronthaul networks based on Fiber to the Home (FTTH) technology. This adds complexity and sources of inefficiency, such as the laser tuning time (LTT) delay, which is often ignored when evaluating the performance of Dynamic Bandwidth Allocation (DBA) mechanisms. We present a novel DBA algorithm that dynamically handles the allocation of bandwidth and switches the ONUs’ lasers from one wavelength to the other while taking LTT into consideration. To optimize the packet delay, we introduce a scheduling mechanism that follows the Longest Processing Time first (LPT) scheduling discipline, which is implemented over the Interleaved Polling with Adaptive Cycle Time (IPACT) DBA. We also provide quality of service (QoS) differentiation by introducing the Max-Min Weighted Fair Share Queuing principle (WFQ) into the algorithm. The performance of our algorithm is evaluated through simulations against the original IPACT algorithm, which we have extended to support multi-wavelengths. With the introduction of LPT, we obtain an improved performance of up to 73% reduction in queue delay over IPACT while achieving QoS differentiation with WFQ.This work has been supported by the Agencia Estatal de Investigación of Spain under project PID2019‐108713RB‐C51/AEI/10.13039/501100011033.Peer ReviewedObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i InfraestructuraObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i Infraestructura::9.1 - Desenvolupar infraestructures fiables, sostenibles, resilients i de qualitat, incloent infraestructures regionals i transfrontereres, per tal de donar suport al desenvolupament econòmic i al benestar humà, amb especial atenció a l’accés assequible i equitatiu per a totes les personesObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i Infraestructura::9.4 - Per a 2030, modernitzar les infraestructures i reconvertir les indústries perquè siguin sostenibles, usant els recursos amb més eficàcia i promovent l’adopció de tecnologies i processos industrials nets i racionals ambiental­ment, i aconseguint que tots els països adoptin mesures d’acord amb les capacitats respectivesPostprint (published version

    Examen parcial Q1 (Curs 2019-2020)

    No full text
    Resolve
    corecore